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Procedural Methods for Urban Modeling

Fast Simulation of Realistic Trees
Jason P. Weber

Trees in 3D interactive applications began 
mostly as textured billboards, scaled semi-
transparent pictures that spun around their 

vertical axis to face the viewer.1 Those situations 
where vegetation began to play a stronger foreground 
role required higher fidelity, and simple geometric 
structures emerged. Although initially rudimentary 
and sometimes combined with textured subshapes, 
these new forms signaled a focus on increasing re-
quirements for botanical structures.

In addition to a vastly improved spatial presence, 
these articulated bodies allow for motion beyond simple 
scaling and shearing. Artistically driven animations or 
programmed sinusoidal oscillations potentially let the 
viewer imagine light winds, but these techniques have 
difficulty portraying heavy or gusty winds and can’t re-
act to unpredictable events. At some point, plants will 
have to directly interact with other scene components 
by detecting and resolving collisions.

Rigid-body simulations, a way to deal with colli-
sions, are becoming increasingly popular in interac-
tive applications such as games. General rigid-body 
methods have demonstrated success using a variety 
of basic solids, such as boxes and barrels. However, 
more intricate objects have benefited from more spe-
cialized simulations—in particular, the implementa-
tion of vehicles, particle effects, and cloth2 using 
spontaneous environmental constraints.

Simulation of vegetation has been generally lim-
ited to the influence of force fields such as wind and 
gravity,3 without considerations for collisions.

We’ve developed a method that uses separable 
projections and streamlined mechanics to ef-
ficiently simulate the motion of vegetation. The 
associated algorithm is about 15 to 2,000 times 
faster than recently published methods.

The approach
For comparative benchmarking and validation of 
our results, we need a proven model for tree struc-
ture. We briefly describe this structure to establish 
the branching patterns, number of segments, and 
angles involved in producing the geometry.

Structure
We base the model on fixed-length rods attached end 
to end, each held up by angular springs that resist 
deflection from a rest angle relative to its parent.

For each tree’s structure, we started with an 
artistically driven model.4 This provides an easy 
method to generate the length, radius, and angles 
of all the stem segments. To enhance the realism 
of motion, we’ve made the two following improve-
ments to the model, which are based on observa-
tions in art references and were previously used 
in a botanical branching model.5 Early references 
to these properties date back to 
Leonardo da Vinci.

First, we strictly enforce the 
continuity of the sum of cross 
sections across each fork in the 
structure. In the case of a single 
branch from the main trunk, 
this means that the difference 
in the cross-sectional area of the 
trunk from just before the fork 
to right after the fork is exactly 
equal to the cross-sectional area 
of the new branch at its root.

Second, when a branch forks 
off at a particular angle, the par-
ent is pushed away at an opposing 
angle with a magnitude inversely 
proportional to the ratio of the 
parent’s cross section after the fork to the total 
cross section before the fork.

Both of these features can be scaled at each 
branching level to temper their effects.

Mechanics
An alternate approach6 built a hierarchical simula-
tion that employs some of the same concepts as a 
well-known robotics model,7 although the motion 
was based purely on unit quaternions. A quaternion is 
a particular four-component hypercomplex number 
useful for encoding rotations in 3D space. This ap-
proach also used sprung chains of rigid segments to 

By leveraging research in cloth 
dynamics and building from 
established mathematical 
algorithms, the proposed 
process realistically drives 
detailed vegetation with 
minimal computation. A 
method of dimensionally 
separate semi-implicit solvers 
allows quick reaction to not 
only simple force fields, such 
as wind and gravity, but also 
hard collisions against solid 
obstacles.
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represent plant stems. The quaternions produced 
a twisting motion in addition to basic bending. 
The model used precise equations for the mass 
moment of inertia of truncated cones. Yet, by us-
ing chains of rods, the underlying model already 
deviates fundamentally from the microscopically 
continuous properties of natural wood.

Our new approach is faster and more stable. To 
maximize performance, we first determine what po-
tential capabilities we can eliminate. First, we can 
ignore axial twisting of branches. Whatever motion 
might have resulted from true rotation about the axis 
of a stem can be expected to often occur, at least to 
some extent, by a combination of bending motions of 
other segments. Additionally, literal torque computa-
tion is unnecessarily expensive. We’re already replac-
ing a continuous natural object with a model of rigid 
rods. Absolute mechanical precision isn’t essential. Fi-
nally, we neglect general self-collision. The potential 
intersecting motion of numerous branches is unlikely 
to be noticed in the context of the greater object.

In our prior implementation,6 we used an ex-
plicit forward Euler method, where the future 
state is based purely on the forces at the current 
state. Explicit models tend to convert error into an 
accumulation of energy. For example, in a plan-
etary simulation of an orbiting satellite, the use 
of only the present state to project motion forward 
will cause the orbit to expand. Without constant 
restraint, these systems can quickly explode.

While we could restrain the system for trees, 
we had difficulties getting the objects to settle. In 
the context of massive main branches, the nearly 
weightless terminating twigs would refuse to reach 
a completely still state. In contrast, a semi-implicit 
model will tend to convert this persistent error into 
a dissipation of energy. With the orbiting satellite, 
the use of the future state over the entire time 
step cuts into the perfect curvature of motion, and 
the orbit will shrink and collapse. This results in 
a damping of velocity much like drag. The settling 
tendency this produces will consistently result in 

a much more stable system with little need to im-
pose fine substeps in time or to apply unrealisti-
cally heavy viscosity to the environment.

To reduce the computational load, we aggressively 
minimize the degrees of freedom (DOFs). Although 
generating plausible motion with only one DOF per 
node is inconceivable, we propose a method that’s 
faster than two general DOFs. We model the sys-
tem as a pair of separable 1D simulations in 2D 
space, for which each segment contributes one DOF 
to each simulation. During each time step, this 
method can recombine the computations’ results 
into the motion of a fully 3D structure.

Semi-implicit form
Published methods for vegetation dynamics aren’t 
nearly as common as for other domains, such as 
cloth. Fortunately, we can still leverage the similar 
research. An equation popularly used to simulate 
cloth8 can be equally helpful in solving hierarchi-
cal structures:
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At a particular time step, the only unknown in this 
equation is the change in velocity ∆v, a column vec-
tor. M is a diagonal matrix representing the masses 
in the system. The column vector f0 represents the 
forces on each node at the beginning of the current 
time step. h is the advancement in time for the next 
step forward, often selected as the period between 
the video refreshes. The partial derivatives ∂f/∂x and 
∂f/∂v are square matrices that describe the change 
in force relative to a change in position or velocity. 
These factors are key to the stability. The column 
vector v0 is the velocity at the beginning of the cur-
rent time step. The optional column vector y lets us 
impose a positional change in the current time step, 
such as for reactions to collisions.

We solve Equation 1 for the velocity change ∆v and 
then compute the position change ∆x as follows:

∆x = h(v0 + ∆v)

The planar model
First, we describe a single 1D simulation in 2D 
space for which recombination is unnecessary. To 
introduce the method, we use a simple example 
system of four connected rods constrained to a 
plane (see Figure 1a).

Each node has one DOF, the angle from vertical 
in world space, positive to the right. Each node has a 
rest angle relative to its parent. Angular displacement 
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Figure 1. A 
(a) four-node 
tree and an (b) 
angular spring. 
These are the 
basis for a very 
simple tree in a 
2D plane.
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from that rest angle causes a force against a spring 
(see Figure 1b).

Overall, a time step is processed in three stages. 
The first stage accumulates the forces for the cur-
rent time step while detecting and correcting 
collisions. The second stage applies a conjugate-
gradient solver. The final stage runs kinemat-
ics over the full model. For this, it moves each 
segment’s base point to its parent’s end point. It 
computes that end point from the parent’s world 
angle and length.

In an interactive simulation, the advancement 
of a time step is usually followed by a rendering 
of the object. Although the two jobs don’t have to 
be synchronized one-to-one, the simulation’s sta-
bility should easily allow whole time steps at the 
display rate, such as 1/60 of a second.

The first step is to determine the force on each 
node. Each relationship between a parent and its 
child involves a spring, with a spring constant k, 
which presses equally on both nodes in opposite 
directions. At the rest angle relative to the par-
ent, denoted as R, neither the parent nor the child 
receives any spring force from the relationship. 
There’s also a structural drag c that resists motion 
relative to the parent. This isn’t a viscous drag but 
a resistance to bending changes.

At this point, we shift from treating the vari-
ables as angles to just positions of weights on a 
line. For node N with parent P and a number of 
children n iterated by i, we compute the force us-
ing “positions” Θ  and velocities v :
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For this example, we keep all values in world 
space. For root nodes, we omit the parent terms 
ΘP and vP. For terminal nodes, there are no child 
terms. The complete tree with four nodes yields 
the following system, used explicitly to provide f0 
for Equation 1:
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Next, we assemble the partial derivatives of the 
force on each node relative to the angle and veloc-
ity of every node, including the node itself, into 
two matrices. For our example, this results in two 
4 × 4 matrices:
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All kN and cN are constants. For the effect of 
gravity, we can use the following equation: on 
node N,

fgN = mNgsin(ΘN)

where mN is a node’s mass and g is the constant 
acceleration of gravity. This term is added to the 
force for each node and contributes solely to f0 
in Equation 1. We don’t reflect this term in the 
partial derivative matrices because it’s a nonlinear 
effect in this angular space and its contribution 
to those matrices would be substantially smaller 
than that of the springs. This inaccuracy simply 
means that we use a fixed contribution over each 
small time step even though the force might be 
changing slightly. We can add wind in the same 
manner, even if it isn’t uniform.

Looking back to Equation 1, where Θ  represents 
x, these additional equations provide the remain-
ing values except y. We’ll use y in collisions. After 
substituting known values into Equation 1, the 
result adheres to a common form:

Ax b= 	�  (2)

In this abstraction, x  refers to the ∆v vector 
in the model, not ∆x. In small systems, such as 
the four-node example, we could simply rearrange 
Equation 2:

x A b= −1

However, inverting A can be prohibitively expen-
sive when the node count increases from four to a 
few dozen, such as in Figure 2 (next page), and later 
on to several thousand. Later, we describe a popular 
method to solve such systems of equations.
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In the planar case, we can handle collisions 
simply by pushing the segments that penetrate 
the collider away from the obstacle until they no 
longer collide. Because there’s only one angle, it’s 
readily apparent which direction leads immedi-
ately away from the obstacle. For the current time 
step, we implement the change in position by im-
mediately adjusting each affected angle ΘN  in an 
angular treatment to where it no longer impacts 
the collider surface. Situations might exist where 
a single pass of corrections won’t completely clear 
the obstacle, but there might not be time to run 
additional correction passes. Occasionally, cor-
recting a collision might take a few frames, or in 
the case of competing obstacles, a clear path might 
not even exist. Altering ΘN  should propagate a 
change to the nodes’ descendants. To also affect 
the ancestors, we impose this displacement into 
the solver for the current time step by adding the 
position change to yN in Equation 1. Without this 
factor, heavily tensed springs would pick up no-
ticeable vibrations. We can adjust these reactions 
with simple scalars to soften the impact or rebal-
ance the response of ancestors and descendants.

This model determines collisions from the root 
outward. If any correction occurs, each node in 
that node’s descendant subtree is tagged as dirty. 
As the collision phase visits all the nodes, all dirty 
nodes undergo a repeated kinematic computation 
to generate start and end points. This ensures that 
the positioning is always current. So, if a node’s 
correction brings some of its descendants closer to 
or further from an obstacle, those nodes will react 
on the basis of the adjusted position. Without this, 
collisions usually tend to cause excessive energy 
with redundant reactions.

The spatial model
You usually can’t extend a simulation from one to 
two dimensions by simply repeating the operations 
a second time. But if you can frame the method 
so that the axes of motion are solvable separately, 
you can very nearly achieve that goal. In fact, truly 
independent procedures can run in parallel.

We treat the simulation of the spatial case as 
two independent instances of the planar case, each 
with an independent solver. When we construct a 
tree’s initial state, we project the rest angle onto 

the x-y and y-z planes. After each simulation step, 
we reconstruct the hierarchy in 3D world space.

As a result of the two simulations, each node 
has an absolute angle in each 1D solver space. 
Standing alone, these represent the angle away 
from the vertical y-axis, one initially toward the 
x-axis and one initially toward the z-axis. But even 
though we solve these angles independently, they 
act collectively in world space. To recombine these 
two angles from separated solver space into world 
space, we map them into a single rotation.

An exact reverse projection would involve taking 
these lines on the x-y and y-z planes and extrud-
ing them along the perpendicular axes, in z for Θx 
and in x for Θz. The intersection of the resulting 
tilted planes might produce the desired line. But 
this works only for small angles. If one angle is ap-
proximately 90 degrees, the other angle has virtu-
ally no effect. A mathematically optimal solution 
could involve a commutative linear combination 
of the two rotations,9 but the required matrix 
exponential computation would be prohibitively 
expensive. We could simply concatenate the two 
rotations, like a universal joint in mechanics, but 
we get better behavior by mapping them through 
an angle-axis form:

Θ Θ Θw x z= +2 2 	�  (3)

axis z x= − Θ Θ0 	�  (4)

This isn’t a derived mathematical conversion but 
an arbitrary mapping chosen for continuity and 
smooth behavior. It’s much like the angle-axis rota-
tions common in computer graphics, except that the 
magnitude of rotation is driven by the Pythagorean 
hypotenuse of the two inputs. We choose the axis 
so that when one angle is fixed at zero, the resulting 
motion follows the expected degenerate behavior. 
Because changes of sign in either direction will pass 
through zero, the output stays continuous.

In Figure 3, an input of positive Θx, where Θz is 
zero (shown in red), results in a vector in the x-y 
plane. An input of positive Θz, where Θx is zero 
(shown in green), results in a vector in the y-z 
plane. An input of positive Θx, equal to Θz (shown 
in blue), is a rotation about the line x = −z.

We would run into problems if we directly 
mapped the absolute node angles to a world ro-
tation, such as we described with the four-node 
planar tree. As Θw approaches π, the directions 
of change of an increasing Θx or Θz converge and 
become nearly aligned. This causes poor dynamic 
behavior and severely hinders the system’s ability 
to react to collisions. In fact, the orthogonality 

(b)(a)

Figure 2. 
Simulated 
planar tree  
(a) before 
and (b) after 
collision. The 
system scales 
easily and 
produces stable 
results.
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of these direction vectors is a loose metric of the 
validity of the solvers’ separation. Although the 
mapping breaks down at 180 degrees, this method 
preserves proper behavior well past 90 degrees.

To solve these problems and keep all the mapping 
angles sufficiently small, we apply this mapping only 
for each node relative to its parent. This technique 
will result in a slightly different geometric structure 
because it distributes the imprecise mapping’s effect 
in slight increments over every segment instead of 
in potentially increasing independent jumps to-
ward the outlying segments. In Equations 3 and 4, 
instead of using the absolute angle in the x-y or 
y-z planes, we use the angular difference for each 
component from the like component of the node’s 
parent, still in the 1D solver space:

Θ Θ Θcr ca pa= −

We define these subscripts as child-as-relative, 
child-as-absolute, and parent-as-absolute. From 
this Θcr , this approach computes a relative qua-
ternion using Equations 3 and 4. It concatenates 
the result to the parent’s absolute quaternion, re-
sulting in an absolute quaternion for the child:

Qca = QpaQcr

Because of this indirect mapping, it’s difficult 
to implicitly predict how changing either angle 
would affect the absolute world position. This ap-
proach produces a pair of direction vectors by us-
ing Equations 3 and 4 three times for each node 
at the end of each time step. In addition to using 
the inputs (Θx, Θz), this approach runs additional 
passes for (Θx + a, Θz) and (Θx, Θz + a), where 
a is a small change in angle. The corresponding 
difference of the endpoints of the stem from the 
first pass to each additional pass produces a pair of 
directional vectors. The result isn’t normalized. At 
small angles, these vectors are nearly orthogonal. 
These direction vectors are analogous to discrete 
partial derivatives where you can approximate the 
change in the endpoint for any small change in 
either angle.

Collisions in 3D space are a bit trickier than in 
the planar scenario. The magnitude and direction 
of interpenetration of the collision object into any 
particular node provides a desired correction vec-
tor. To mitigate the reaction, the adjustment scales 
from full intensity for a collision at a segment’s 
end, down to no effect for a collision at the base. 
We do this by projecting the contact point onto the 
segment’s axis and using the projection’s distance 
from the base of the segment scaled as a fraction of 

the full length. We can also impose a multiplicative 
tweak factor here to soften or amplify the reaction. 
Overly soft reactions might cause persistent pen-
etration; excessive reactions can cause vibration.

We can adjust a node position by using a linear 
combination of the direction vectors we just gen-
erated. Because we have only two vectors, this can 
only be an approximation and generally results in 
a remainder that will be discarded. To fairly bal-
ance the contribution of the two directions, which 
aren’t perfectly orthogonal, we iteratively take the 
difference of each scalable direction vector from 
the desired correction and then project that result 
onto the other direction vector, producing a new 
scale for that other vector.

Figure 4 shows an attempt to approximate the 
desired correction vector C0. Suppose the direction 
vectors, C1 and C2, are along the x-axis and the 

z
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ΘZ only

ΘX only

ΘX = ΘZ

x = −z

y Figure 3. 
Conversion 
from separate 
simulations to 
angle-axis. This 
provides fully 
spatial results 
from a pair of 
planar solvers.
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Figure 4. (a) Weighting the direction vectors and (b) approximating the 
correction vector. These operations confine a desired correction to an 
optimally scaled combination of two possible corrections.
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line x = z. This substantial deviation from orthog-
onality would represent a near approach to the 
180-degree failure case. Figure 4a examines the first 
vector for the first iteration. To scale C1, we take the 
difference of the other vector, C2, from C0. We then 
project this C7 onto C1, scaling it to ′C1 . Afterward, 
this approach then uses ′C1  to scale C2, and so 
on, for multiple iterations, eventually converging 
to a C3 and C4 such as in Figure 4b. In practice, 
four iterations of both vectors converges reason-
ably well, at least to the extent that the given two 
vectors are even capable of combining to reach an 
arbitrary correction vector.

The iteration process we just described results in 
scaled versions of C1 and C2 such as C3 and C4 in 
Figure 4b, shown as solid red and green (upscaling 
and negative scales are allowed as well). The ap-
proximation of C0 is the sum of these vectors, C5, 
which will likely never match C0 exactly. The dif-
ference, C6 (shown in blue), is lost. This generally 
represents force applied down the shaft of a stem 
and is usually small and much less desirable. Like 
in the planar case, the scalars from C0 and C1 to C3 

and C4 provide the y values for equation 1.
Although we demonstrate collisions with a 

sphere, the contact point and penetration depth 
of each intersection can come from any collision 
detection system.

As with the planar model, this approach deter-
mines collisions from the root outward during the 
accumulation stage. If a correction occurs at any 
point, that node’s descendant subtree is marked 
dirty, which provokes a new kinematic calculation 
of the start and end points.

We can also take this opportunity to add a wind 
force w  scaled to the surface area facing the wind 
source. We compute the wind force on node N 
along each of the separable axes, with its unit cor-
rection direction d̂N , length lN , and approximate 
radius rN, as

f l r d wwN N N N= ( )ˆ i

This wind force is demonstrated in Figure 5.

The solver
The conjugate gradient is a popular method for it-
eratively solving systems of linear equations that 
conform to Equation 2, repeated here:

Ax b=

Given A and b, x  is solved. The matrix A is gen-
erally always sparse, meaning that most elements 
are zero. This can provide substantial opportuni-
ties for optimization. A conjugate-gradient solver 
takes a series of steps, orthogonal in A, to reduce 
a residual initialized with b Ax− 0  and seeded with 
an initial state x0 .10

For this approach to safely use the conjugate 
gradient, the matrix A must be symmetric and 
positive-definite. Also, the diagonal should be fully 
populated with nonzero values. But the wide varia-
tion in mass in a botanical structure can preclude 
the solver from quickly converging to a solution, if 
at all. The ideal matrix would have all its diagonal 
elements equal to one. To achieve this, we use a 
carefully selected preconditioner:

C AD=

AD is A with all the nondiagonal elements set 
to zero. We use this to modify Equation 2 to an 
equivalent form:

C AC Cx C b− − −( )( ) = ( )1 1 1

The first parenthetical term results in a matrix 
with a unit diagonal that solves easily. To recover 
the true x , we premultiply the resulting solution 
of Cx  by C−1 .

(a) (b)

Figure 5.  
(a) Heavy 
wind in a 
simple tree. All 
branches react 
based on their 
size and angle 
into the wind. 
(b) Ridiculous 
wind in a dense 
tree. Even 
under extreme 
conditions, 
the simulation 
remains very 
stable.
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Performance
The goal of this method is a substantial increase 
in speed relative to prior published methods. We 
describe the circumstances of our testing and pro-
vide quantitative results.

Threading
With the emergence of multicore processors and 
the increased availability of multiprocessor plat-
forms, it has become important to demonstrate 
how an algorithm can be distributed among mul-
tiple threads.

Because we eliminate any dependence between 
Θx and Θz during the solver stage, we can solve the 
system in two parallel parts using two fully inde-
pendent conjugate-gradient solvers. On a loaded 
system, using the two solvers in parallel can re-
duce the solver time by nearly half.

The kinematic stage can be broken down into ba-
sically any number of threads, although too many 
threads could pick up excessive overhead. For this 
procedure, we set up a job queue of subtrees. As 
the master thread processes the kinematics on the 
zeroth level, whenever it reaches a child not of the 
zeroth level, it adds that subtree to the job queue 
instead of running its kinematics directly. When 
the master thread finishes the nodes of the zeroth 
level, it can participate in the job queue along with 
any number of worker threads.

In an interactive situation, we can also do the 
rendering on a separate thread. The interactive ap-
plication sends abstracted rendering commands, 

such as polygon lists, to a command cache. Anal-
ogous to the double buffering in OpenGL, a syn-
chronization command signals that the current 
writable cache is complete. After a possible wait 
for the rendering thread to finish processing the 
current rendering cache, the simulation handler 
swaps the write cache with the rendering cache, 
and both threads continue.

Profiling results
We compare the performance of the dense tree 
in Figure 6a (2,246 segments) with that of the 
simpler tree in Figure 6b (907 segments). We run 
each tree using a single thread first and then with 
multiple threads. Table 1 shows the results with 
no collider; Table 2 shows the results with a col-
lider that orbits closely around the trunk. Using 

(a) (b)

Figure 6.  
(a) Dense tree 
with 2,246 
segments and 
6,840 leaves 
and (b) simple 
tree with 907 
segments and 
1,530 leaves. 
Behavior is 
consistent 
with various 
simulation 
densities.

Table 1. Frame cost without a collider (microseconds). Higher density has only a small effect on cost 
per node. Multithreading provides a substantial improvement.

 
Phase

Simple Dense

Single-threaded Multithreaded Single-threaded Multithreaded

Populate 316 431 1,150 1,316

Solve 430 207 1,023 914

Kinematics 901 457 2,512 1,159

Cost per node 1.81 1.21 2.08 1.51

Table 2.  Frame cost with an orbiting collider (microseconds). Costs increase evenly with a slight 
favor toward multithreading.

 
Phase

Simple Dense

Single-threaded Multithreaded Single-threaded Multithreaded

Populate 935 1,150 2,758 3,004

Solve 1,594 813 3,737 2,266

Kinematics 980 576 2,595 1,114

Cost per node 3.86 2.79 4.04 2.84
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a fixed collider in contact with the tree results in 
nearly the same performance as with no collider, 
as long as the simulation is given enough frames 
to settle.

We performed the tests on a Linux 2.6.9 kernel 
with two AMD Opteron 275 dual-core processors. 
All nodes were active at all times. We didn’t influ-
ence the measurements with any multiresolution 
or hibernation techniques, which can substantially 
increase performance under the right conditions.6,11 
This is an important consideration because a whole 
forest of trees is clearly too much load for current 
platforms, even if the system has several proces-
sor cores to divide the effort. But using carefully 
chosen distance and occlusion metrics, likely based 
on camera position and properties, would allow 

much of the plants to be still, to be approximated 
by deformable or oscillating curves, or to be simpli-
fied with variable physical resolution. Also, some 
applications might be able to tolerate much lower 
simulation resolution than we demonstrated, per-
haps with only 100 or so active nodes.

The populate phase involves processing contacts 
from any collisions, redoing minimal kinemat-
ics as needed, and then forming the dynamic b  
for the current time step. The solver stage applies 
preconditioning and runs the two solvers. The ki-
nematic stage includes quaternion and direction 
calculation, leaf transformation, recalculation of 
the tree surface geometry, and an accumulation 
of forces pushing back on any colliders. This phase 
doesn’t include the minor kinematic adjustment 
from collisions.

For the dense tree with an orbiting collider, run-
ning the separable solvers in parallel takes 61 per-
cent of the time that those solvers take serially. 
Also, running the kinematics with four threads in 
parallel consumes only 43 percent of the corre-
sponding serial time.

In these tests, the system scales almost linearly. 
With the increased load of the collider, a 150 per-
cent increase in nodes raises the cost per node less 
than 5 percent. A conjugate gradient has O(m) com-
plexity, where m is the number of nonzero elements 

in A.10 Because the system consistently contributes 
a base of three or four nonzero elements per node, 
this suggests O(n) complexity. The variation in ele-
ment count is due to forking, so higher amounts of 
branching can have increased complexity.

For comparison, consider a noncolliding model 
of a 2D nonbranching minimally rigid pendulum11 
using a Featherstone7 implementation. That sys-
tem takes 6 milliseconds to solve 300 nodes, each 
with only one DOF. If we linearly adjust from that 
2.8-GHz processor to our 2.2 GHz, this equates to 
a cost per node of more than 25 microseconds. Us-
ing our model to simulate a limp, branchless stem 
of 300 segments, the total simulation time is 440 
µs single-threaded, which is 1.5 µs per segment 
and 0.7 µs per DOF.

For a complex branching tree, consider an-
other Featherstone implementation, specifically 
optimized for hair and vegetation.12 In a simple 
system of 135 segments, this implementation 
achieved a best case of 250 ms, about 2 ms per 
node. For a larger system of 4,500 segments, it 
achieved a best case of 20 seconds, about 4 ms 
per node. This is comparable to the noncollid-
ing case of our model, which achieves 1.8 µs per 
node single-threaded and 1.2 µs per node multi-
threaded. Adding an aggressive collider raises the 
cost per node to only 3.8 µs single-threaded and 
2.8 µs multithreaded.

Memory use consists of two primary parts: the 
geometry and the solver. The geometry data is 
populated mostly with segments and their various 
properties. In our sample implementation, a seg-
ment uses approximately 60 32-bit words. The solv-
er data consists of sparse matrices and fixed-length 
vectors. The implementation of the sparse matrices 
uses two words per nonzero entry: the value and 
the horizontal position. Including the dual solvers’ 
expense, our implementation uses 10 matrices and 
21 vectors (although if we neglect code readabil-
ity, we could probably reuse or eliminate several of 
these). This works out to approximately 80 to 100 
words each for the solver, for a total expense of 140 
to 160 words per segment. A well-represented tree 
could consume about 1 Mbyte.

This simplified method recreates the natu-
ral behavior of vegetation with a minimum 

of computational expense. The model works best 
for stiff structures where the angles between seg-
ments don’t approach 180 degrees. The current 
implementation isn’t suitable for soft vine-like 
structures, including those in trees such as the 
weeping willow.

This simplified method 
recreates the natural 

behavior of vegetation  
with a minimum of 

computational expense.
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Performance tests have demonstrated the re-
duced system’s benefits. Using two N × N systems 
instead of a combined system of at least 2N × 2N 
not only substantially reduces the work that the 
solver requires but also lets us divide the solver 
and run it in parallel.

The full source code for the programs that 
produced the images in this article is available 
at www.freeelectron.org. This includes converted 
tree specifications from prior work,4 as shown in 
Figure 7.�
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Figure 7. A collection of trees from the original structural model. 
Equivalent parameters are easily determined.


