
Published by the IEEE Computer Society	 0272-1716/08/$25.00 © 2008 IEEE	 IEEE Computer Graphics and Applications� 67

Procedural Methods for Urban Modeling

Fast Simulation of Realistic Trees
Jason P. Weber

Trees in 3D interactive applications began
mostly as textured billboards, scaled semi-
transparent pictures that spun around their

vertical axis to face the viewer.1 Those situations
where vegetation began to play a stronger foreground
role required higher fidelity, and simple geometric
structures emerged. Although initially rudimentary
and sometimes combined with textured subshapes,
these new forms signaled a focus on increasing re-
quirements for botanical structures.

In addition to a vastly improved spatial presence,
these articulated bodies allow for motion beyond simple
scaling and shearing. Artistically driven animations or
programmed sinusoidal oscillations potentially let the
viewer imagine light winds, but these techniques have
difficulty portraying heavy or gusty winds and can’t re-
act to unpredictable events. At some point, plants will
have to directly interact with other scene components
by detecting and resolving collisions.

Rigid-body simulations, a way to deal with colli-
sions, are becoming increasingly popular in interac-
tive applications such as games. General rigid-body
methods have demonstrated success using a variety
of basic solids, such as boxes and barrels. However,
more intricate objects have benefited from more spe-
cialized simulations—in particular, the implementa-
tion of vehicles, particle effects, and cloth2 using
spontaneous environmental constraints.

Simulation of vegetation has been generally lim-
ited to the influence of force fields such as wind and
gravity,3 without considerations for collisions.

We’ve developed a method that uses separable
projections and streamlined mechanics to ef-
ficiently simulate the motion of vegetation. The
associated algorithm is about 15 to 2,000 times
faster than recently published methods.

The approach
For comparative benchmarking and validation of
our results, we need a proven model for tree struc-
ture. We briefly describe this structure to establish
the branching patterns, number of segments, and
angles involved in producing the geometry.

Structure
We base the model on fixed-length rods attached end
to end, each held up by angular springs that resist
deflection from a rest angle relative to its parent.

For each tree’s structure, we started with an
artistically driven model.4 This provides an easy
method to generate the length, radius, and angles
of all the stem segments. To enhance the realism
of motion, we’ve made the two following improve-
ments to the model, which are based on observa-
tions in art references and were previously used
in a botanical branching model.5 Early references
to these properties date back to
Leonardo da Vinci.

First, we strictly enforce the
continuity of the sum of cross
sections across each fork in the
structure. In the case of a single
branch from the main trunk,
this means that the difference
in the cross-sectional area of the
trunk from just before the fork
to right after the fork is exactly
equal to the cross-sectional area
of the new branch at its root.

Second, when a branch forks
off at a particular angle, the par-
ent is pushed away at an opposing
angle with a magnitude inversely
proportional to the ratio of the
parent’s cross section after the fork to the total
cross section before the fork.

Both of these features can be scaled at each
branching level to temper their effects.

Mechanics
An alternate approach6 built a hierarchical simula-
tion that employs some of the same concepts as a
well-known robotics model,7 although the motion
was based purely on unit quaternions. A quaternion is
a particular four-component hypercomplex number
useful for encoding rotations in 3D space. This ap-
proach also used sprung chains of rigid segments to

By leveraging research in cloth
dynamics and building from
established mathematical
algorithms, the proposed
process realistically drives
detailed vegetation with
minimal computation. A
method of dimensionally
separate semi-implicit solvers
allows quick reaction to not
only simple force fields, such
as wind and gravity, but also
hard collisions against solid
obstacles.

68	 May/June 2008

Procedural Methods for Urban Modeling

represent plant stems. The quaternions produced
a twisting motion in addition to basic bending.
The model used precise equations for the mass
moment of inertia of truncated cones. Yet, by us-
ing chains of rods, the underlying model already
deviates fundamentally from the microscopically
continuous properties of natural wood.

Our new approach is faster and more stable. To
maximize performance, we first determine what po-
tential capabilities we can eliminate. First, we can
ignore axial twisting of branches. Whatever motion
might have resulted from true rotation about the axis
of a stem can be expected to often occur, at least to
some extent, by a combination of bending motions of
other segments. Additionally, literal torque computa-
tion is unnecessarily expensive. We’re already replac-
ing a continuous natural object with a model of rigid
rods. Absolute mechanical precision isn’t essential. Fi-
nally, we neglect general self-collision. The potential
intersecting motion of numerous branches is unlikely
to be noticed in the context of the greater object.

In our prior implementation,6 we used an ex-
plicit forward Euler method, where the future
state is based purely on the forces at the current
state. Explicit models tend to convert error into an
accumulation of energy. For example, in a plan-
etary simulation of an orbiting satellite, the use
of only the present state to project motion forward
will cause the orbit to expand. Without constant
restraint, these systems can quickly explode.

While we could restrain the system for trees,
we had difficulties getting the objects to settle. In
the context of massive main branches, the nearly
weightless terminating twigs would refuse to reach
a completely still state. In contrast, a semi-implicit
model will tend to convert this persistent error into
a dissipation of energy. With the orbiting satellite,
the use of the future state over the entire time
step cuts into the perfect curvature of motion, and
the orbit will shrink and collapse. This results in
a damping of velocity much like drag. The settling
tendency this produces will consistently result in

a much more stable system with little need to im-
pose fine substeps in time or to apply unrealisti-
cally heavy viscosity to the environment.

To reduce the computational load, we aggressively
minimize the degrees of freedom (DOFs). Although
generating plausible motion with only one DOF per
node is inconceivable, we propose a method that’s
faster than two general DOFs. We model the sys-
tem as a pair of separable 1D simulations in 2D
space, for which each segment contributes one DOF
to each simulation. During each time step, this
method can recombine the computations’ results
into the motion of a fully 3D structure.

Semi-implicit form
Published methods for vegetation dynamics aren’t
nearly as common as for other domains, such as
cloth. Fortunately, we can still leverage the similar
research. An equation popularly used to simulate
cloth8 can be equally helpful in solving hierarchi-
cal structures:

M − ∂
∂

− ∂
∂







= + ∂
∂

+ ∂
∂




h
f
v

h
f
x

v h h
f
x

f
x

2
0 0Δ f v y

 � (1)

At a particular time step, the only unknown in this
equation is the change in velocity ∆v, a column vec-
tor. M is a diagonal matrix representing the masses
in the system. The column vector f0 represents the
forces on each node at the beginning of the current
time step. h is the advancement in time for the next
step forward, often selected as the period between
the video refreshes. The partial derivatives ∂f/∂x and
∂f/∂v are square matrices that describe the change
in force relative to a change in position or velocity.
These factors are key to the stability. The column
vector v0 is the velocity at the beginning of the cur-
rent time step. The optional column vector y lets us
impose a positional change in the current time step,
such as for reactions to collisions.

We solve Equation 1 for the velocity change ∆v and
then compute the position change ∆x as follows:

∆x = h(v0 + ∆v)

The planar model
First, we describe a single 1D simulation in 2D
space for which recombination is unnecessary. To
introduce the method, we use a simple example
system of four connected rods constrained to a
plane (see Figure 1a).

Each node has one DOF, the angle from vertical
in world space, positive to the right. Each node has a
rest angle relative to its parent. Angular displacement

(a) (b)

−ΘC

−ΘA

ΘD

ΘB

B

A

C D

Spring

Vertical
Rest angle

Child

Parent

Figure 1. A
(a) four-node
tree and an (b)
angular spring.
These are the
basis for a very
simple tree in a
2D plane.

	 IEEE Computer Graphics and Applications� 69

from that rest angle causes a force against a spring
(see Figure 1b).

Overall, a time step is processed in three stages.
The first stage accumulates the forces for the cur-
rent time step while detecting and correcting
collisions. The second stage applies a conjugate-
gradient solver. The final stage runs kinemat-
ics over the full model. For this, it moves each
segment’s base point to its parent’s end point. It
computes that end point from the parent’s world
angle and length.

In an interactive simulation, the advancement
of a time step is usually followed by a rendering
of the object. Although the two jobs don’t have to
be synchronized one-to-one, the simulation’s sta-
bility should easily allow whole time steps at the
display rate, such as 1/60 of a second.

The first step is to determine the force on each
node. Each relationship between a parent and its
child involves a spring, with a spring constant k,
which presses equally on both nodes in opposite
directions. At the rest angle relative to the par-
ent, denoted as R, neither the parent nor the child
receives any spring force from the relationship.
There’s also a structural drag c that resists motion
relative to the parent. This isn’t a viscous drag but
a resistance to bending changes.

At this point, we shift from treating the vari-
ables as angles to just positions of weights on a
line. For node N with parent P and a number of
children n iterated by i, we compute the force us-
ing “positions” Θ and velocities v :

f R v v

R v

N N N P N N N P

i i N i i

= − − −() − −()

+ − −() +

k c

k c

Θ Θ

Θ Θ ii N
i

n

v−()
=
∑

0

For this example, we keep all values in world
space. For root nodes, we omit the parent terms
ΘP and vP. For terminal nodes, there are no child
terms. The complete tree with four nodes yields
the following system, used explicitly to provide f0
for Equation 1:

f R R

v v v

A A A A B B A B

A A B B A

= − −() + − −()
− + −()

k k

c c

Θ Θ Θ

f R R

R

B B B A B C C B C

D D B D

= − − −() + − −()
+ − −() −

k k

k

Θ Θ Θ Θ

Θ Θ cc

c c

B B A

C C B D D B

v v

v v v v

−()
+ −() + −()

f R v vC C C B C C C B= − − −() − −()k cΘ Θ

f R v vD D D B D D D B= − − −() − −()k cΘ Θ

Next, we assemble the partial derivatives of the
force on each node relative to the angle and veloc-
ity of every node, including the node itself, into
two matrices. For our example, this results in two
4 × 4 matrices:

∂
∂

=

− −
− − −

−
−

f
A B B

B B C D C D

C C

D

Θ

k k k
k k k k k k

k k
k k

0 0

0 0
0 0 DD



















∂
∂

=

− −
− − −

−
−

f
v

A B B

B B C D C D

C C

D

c c c
c c c c c c

c c
c c

0 0

0 0
0 0 DD



















All kN and cN are constants. For the effect of
gravity, we can use the following equation: on
node N,

fgN = mNgsin(ΘN)

where mN is a node’s mass and g is the constant
acceleration of gravity. This term is added to the
force for each node and contributes solely to f0
in Equation 1. We don’t reflect this term in the
partial derivative matrices because it’s a nonlinear
effect in this angular space and its contribution
to those matrices would be substantially smaller
than that of the springs. This inaccuracy simply
means that we use a fixed contribution over each
small time step even though the force might be
changing slightly. We can add wind in the same
manner, even if it isn’t uniform.

Looking back to Equation 1, where Θ represents
x, these additional equations provide the remain-
ing values except y. We’ll use y in collisions. After
substituting known values into Equation 1, the
result adheres to a common form:

Ax b= 	� (2)

In this abstraction, x refers to the ∆v vector
in the model, not ∆x. In small systems, such as
the four-node example, we could simply rearrange
Equation 2:

x A b= −1

However, inverting A can be prohibitively expen-
sive when the node count increases from four to a
few dozen, such as in Figure 2 (next page), and later
on to several thousand. Later, we describe a popular
method to solve such systems of equations.

70	 May/June 2008

Procedural Methods for Urban Modeling

In the planar case, we can handle collisions
simply by pushing the segments that penetrate
the collider away from the obstacle until they no
longer collide. Because there’s only one angle, it’s
readily apparent which direction leads immedi-
ately away from the obstacle. For the current time
step, we implement the change in position by im-
mediately adjusting each affected angle ΘN in an
angular treatment to where it no longer impacts
the collider surface. Situations might exist where
a single pass of corrections won’t completely clear
the obstacle, but there might not be time to run
additional correction passes. Occasionally, cor-
recting a collision might take a few frames, or in
the case of competing obstacles, a clear path might
not even exist. Altering ΘN should propagate a
change to the nodes’ descendants. To also affect
the ancestors, we impose this displacement into
the solver for the current time step by adding the
position change to yN in Equation 1. Without this
factor, heavily tensed springs would pick up no-
ticeable vibrations. We can adjust these reactions
with simple scalars to soften the impact or rebal-
ance the response of ancestors and descendants.

This model determines collisions from the root
outward. If any correction occurs, each node in
that node’s descendant subtree is tagged as dirty.
As the collision phase visits all the nodes, all dirty
nodes undergo a repeated kinematic computation
to generate start and end points. This ensures that
the positioning is always current. So, if a node’s
correction brings some of its descendants closer to
or further from an obstacle, those nodes will react
on the basis of the adjusted position. Without this,
collisions usually tend to cause excessive energy
with redundant reactions.

The spatial model
You usually can’t extend a simulation from one to
two dimensions by simply repeating the operations
a second time. But if you can frame the method
so that the axes of motion are solvable separately,
you can very nearly achieve that goal. In fact, truly
independent procedures can run in parallel.

We treat the simulation of the spatial case as
two independent instances of the planar case, each
with an independent solver. When we construct a
tree’s initial state, we project the rest angle onto

the x-y and y-z planes. After each simulation step,
we reconstruct the hierarchy in 3D world space.

As a result of the two simulations, each node
has an absolute angle in each 1D solver space.
Standing alone, these represent the angle away
from the vertical y-axis, one initially toward the
x-axis and one initially toward the z-axis. But even
though we solve these angles independently, they
act collectively in world space. To recombine these
two angles from separated solver space into world
space, we map them into a single rotation.

An exact reverse projection would involve taking
these lines on the x-y and y-z planes and extrud-
ing them along the perpendicular axes, in z for Θx
and in x for Θz. The intersection of the resulting
tilted planes might produce the desired line. But
this works only for small angles. If one angle is ap-
proximately 90 degrees, the other angle has virtu-
ally no effect. A mathematically optimal solution
could involve a commutative linear combination
of the two rotations,9 but the required matrix
exponential computation would be prohibitively
expensive. We could simply concatenate the two
rotations, like a universal joint in mechanics, but
we get better behavior by mapping them through
an angle-axis form:

Θ Θ Θw x z= +2 2 	� (3)

axis z x= − Θ Θ0 	� (4)

This isn’t a derived mathematical conversion but
an arbitrary mapping chosen for continuity and
smooth behavior. It’s much like the angle-axis rota-
tions common in computer graphics, except that the
magnitude of rotation is driven by the Pythagorean
hypotenuse of the two inputs. We choose the axis
so that when one angle is fixed at zero, the resulting
motion follows the expected degenerate behavior.
Because changes of sign in either direction will pass
through zero, the output stays continuous.

In Figure 3, an input of positive Θx, where Θz is
zero (shown in red), results in a vector in the x-y
plane. An input of positive Θz, where Θx is zero
(shown in green), results in a vector in the y-z
plane. An input of positive Θx, equal to Θz (shown
in blue), is a rotation about the line x = −z.

We would run into problems if we directly
mapped the absolute node angles to a world ro-
tation, such as we described with the four-node
planar tree. As Θw approaches π, the directions
of change of an increasing Θx or Θz converge and
become nearly aligned. This causes poor dynamic
behavior and severely hinders the system’s ability
to react to collisions. In fact, the orthogonality

(b)(a)

Figure 2.
Simulated
planar tree
(a) before
and (b) after
collision. The
system scales
easily and
produces stable
results.

	 IEEE Computer Graphics and Applications� 71

of these direction vectors is a loose metric of the
validity of the solvers’ separation. Although the
mapping breaks down at 180 degrees, this method
preserves proper behavior well past 90 degrees.

To solve these problems and keep all the mapping
angles sufficiently small, we apply this mapping only
for each node relative to its parent. This technique
will result in a slightly different geometric structure
because it distributes the imprecise mapping’s effect
in slight increments over every segment instead of
in potentially increasing independent jumps to-
ward the outlying segments. In Equations 3 and 4,
instead of using the absolute angle in the x-y or
y-z planes, we use the angular difference for each
component from the like component of the node’s
parent, still in the 1D solver space:

Θ Θ Θcr ca pa= −

We define these subscripts as child-as-relative,
child-as-absolute, and parent-as-absolute. From
this Θcr , this approach computes a relative qua-
ternion using Equations 3 and 4. It concatenates
the result to the parent’s absolute quaternion, re-
sulting in an absolute quaternion for the child:

Qca = QpaQcr

Because of this indirect mapping, it’s difficult
to implicitly predict how changing either angle
would affect the absolute world position. This ap-
proach produces a pair of direction vectors by us-
ing Equations 3 and 4 three times for each node
at the end of each time step. In addition to using
the inputs (Θx, Θz), this approach runs additional
passes for (Θx + a, Θz) and (Θx, Θz + a), where
a is a small change in angle. The corresponding
difference of the endpoints of the stem from the
first pass to each additional pass produces a pair of
directional vectors. The result isn’t normalized. At
small angles, these vectors are nearly orthogonal.
These direction vectors are analogous to discrete
partial derivatives where you can approximate the
change in the endpoint for any small change in
either angle.

Collisions in 3D space are a bit trickier than in
the planar scenario. The magnitude and direction
of interpenetration of the collision object into any
particular node provides a desired correction vec-
tor. To mitigate the reaction, the adjustment scales
from full intensity for a collision at a segment’s
end, down to no effect for a collision at the base.
We do this by projecting the contact point onto the
segment’s axis and using the projection’s distance
from the base of the segment scaled as a fraction of

the full length. We can also impose a multiplicative
tweak factor here to soften or amplify the reaction.
Overly soft reactions might cause persistent pen-
etration; excessive reactions can cause vibration.

We can adjust a node position by using a linear
combination of the direction vectors we just gen-
erated. Because we have only two vectors, this can
only be an approximation and generally results in
a remainder that will be discarded. To fairly bal-
ance the contribution of the two directions, which
aren’t perfectly orthogonal, we iteratively take the
difference of each scalable direction vector from
the desired correction and then project that result
onto the other direction vector, producing a new
scale for that other vector.

Figure 4 shows an attempt to approximate the
desired correction vector C0. Suppose the direction
vectors, C1 and C2, are along the x-axis and the

z

x

ΘZ only

ΘX only

ΘX = ΘZ

x = −z

y Figure 3.
Conversion
from separate
simulations to
angle-axis. This
provides fully
spatial results
from a pair of
planar solvers.

(a) (b)

z

x

C0

y

C1

C2

C1‘

C7 = C0 − C2

z

x

C0

y

C1

C3

C4

C5 = C3 + C4

C6 = C0 − C5

C2

Figure 4. (a) Weighting the direction vectors and (b) approximating the
correction vector. These operations confine a desired correction to an
optimally scaled combination of two possible corrections.

72	 May/June 2008

Procedural Methods for Urban Modeling

line x = z. This substantial deviation from orthog-
onality would represent a near approach to the
180-degree failure case. Figure 4a examines the first
vector for the first iteration. To scale C1, we take the
difference of the other vector, C2, from C0. We then
project this C7 onto C1, scaling it to ′C1 . Afterward,
this approach then uses ′C1 to scale C2, and so
on, for multiple iterations, eventually converging
to a C3 and C4 such as in Figure 4b. In practice,
four iterations of both vectors converges reason-
ably well, at least to the extent that the given two
vectors are even capable of combining to reach an
arbitrary correction vector.

The iteration process we just described results in
scaled versions of C1 and C2 such as C3 and C4 in
Figure 4b, shown as solid red and green (upscaling
and negative scales are allowed as well). The ap-
proximation of C0 is the sum of these vectors, C5,
which will likely never match C0 exactly. The dif-
ference, C6 (shown in blue), is lost. This generally
represents force applied down the shaft of a stem
and is usually small and much less desirable. Like
in the planar case, the scalars from C0 and C1 to C3

and C4 provide the y values for equation 1.
Although we demonstrate collisions with a

sphere, the contact point and penetration depth
of each intersection can come from any collision
detection system.

As with the planar model, this approach deter-
mines collisions from the root outward during the
accumulation stage. If a correction occurs at any
point, that node’s descendant subtree is marked
dirty, which provokes a new kinematic calculation
of the start and end points.

We can also take this opportunity to add a wind
force w scaled to the surface area facing the wind
source. We compute the wind force on node N
along each of the separable axes, with its unit cor-
rection direction d̂N , length lN , and approximate
radius rN, as

f l r d wwN N N N= ()ˆ i

This wind force is demonstrated in Figure 5.

The solver
The conjugate gradient is a popular method for it-
eratively solving systems of linear equations that
conform to Equation 2, repeated here:

Ax b=

Given A and b, x is solved. The matrix A is gen-
erally always sparse, meaning that most elements
are zero. This can provide substantial opportuni-
ties for optimization. A conjugate-gradient solver
takes a series of steps, orthogonal in A, to reduce
a residual initialized with b Ax− 0 and seeded with
an initial state x0 .10

For this approach to safely use the conjugate
gradient, the matrix A must be symmetric and
positive-definite. Also, the diagonal should be fully
populated with nonzero values. But the wide varia-
tion in mass in a botanical structure can preclude
the solver from quickly converging to a solution, if
at all. The ideal matrix would have all its diagonal
elements equal to one. To achieve this, we use a
carefully selected preconditioner:

C AD=

AD is A with all the nondiagonal elements set
to zero. We use this to modify Equation 2 to an
equivalent form:

C AC Cx C b− − −()() = ()1 1 1

The first parenthetical term results in a matrix
with a unit diagonal that solves easily. To recover
the true x , we premultiply the resulting solution
of Cx by C−1 .

(a) (b)

Figure 5.
(a) Heavy
wind in a
simple tree. All
branches react
based on their
size and angle
into the wind.
(b) Ridiculous
wind in a dense
tree. Even
under extreme
conditions,
the simulation
remains very
stable.

	 IEEE Computer Graphics and Applications� 73

Performance
The goal of this method is a substantial increase
in speed relative to prior published methods. We
describe the circumstances of our testing and pro-
vide quantitative results.

Threading
With the emergence of multicore processors and
the increased availability of multiprocessor plat-
forms, it has become important to demonstrate
how an algorithm can be distributed among mul-
tiple threads.

Because we eliminate any dependence between
Θx and Θz during the solver stage, we can solve the
system in two parallel parts using two fully inde-
pendent conjugate-gradient solvers. On a loaded
system, using the two solvers in parallel can re-
duce the solver time by nearly half.

The kinematic stage can be broken down into ba-
sically any number of threads, although too many
threads could pick up excessive overhead. For this
procedure, we set up a job queue of subtrees. As
the master thread processes the kinematics on the
zeroth level, whenever it reaches a child not of the
zeroth level, it adds that subtree to the job queue
instead of running its kinematics directly. When
the master thread finishes the nodes of the zeroth
level, it can participate in the job queue along with
any number of worker threads.

In an interactive situation, we can also do the
rendering on a separate thread. The interactive ap-
plication sends abstracted rendering commands,

such as polygon lists, to a command cache. Anal-
ogous to the double buffering in OpenGL, a syn-
chronization command signals that the current
writable cache is complete. After a possible wait
for the rendering thread to finish processing the
current rendering cache, the simulation handler
swaps the write cache with the rendering cache,
and both threads continue.

Profiling results
We compare the performance of the dense tree
in Figure 6a (2,246 segments) with that of the
simpler tree in Figure 6b (907 segments). We run
each tree using a single thread first and then with
multiple threads. Table 1 shows the results with
no collider; Table 2 shows the results with a col-
lider that orbits closely around the trunk. Using

(a) (b)

Figure 6.
(a) Dense tree
with 2,246
segments and
6,840 leaves
and (b) simple
tree with 907
segments and
1,530 leaves.
Behavior is
consistent
with various
simulation
densities.

Table 1. Frame cost without a collider (microseconds). Higher density has only a small effect on cost
per node. Multithreading provides a substantial improvement.

Phase

Simple Dense

Single-threaded Multithreaded Single-threaded Multithreaded

Populate 316 431 1,150 1,316

Solve 430 207 1,023 914

Kinematics 901 457 2,512 1,159

Cost per node 1.81 1.21 2.08 1.51

Table 2. Frame cost with an orbiting collider (microseconds). Costs increase evenly with a slight
favor toward multithreading.

Phase

Simple Dense

Single-threaded Multithreaded Single-threaded Multithreaded

Populate 935 1,150 2,758 3,004

Solve 1,594 813 3,737 2,266

Kinematics 980 576 2,595 1,114

Cost per node 3.86 2.79 4.04 2.84

74	 May/June 2008

Procedural Methods for Urban Modeling

a fixed collider in contact with the tree results in
nearly the same performance as with no collider,
as long as the simulation is given enough frames
to settle.

We performed the tests on a Linux 2.6.9 kernel
with two AMD Opteron 275 dual-core processors.
All nodes were active at all times. We didn’t influ-
ence the measurements with any multiresolution
or hibernation techniques, which can substantially
increase performance under the right conditions.6,11
This is an important consideration because a whole
forest of trees is clearly too much load for current
platforms, even if the system has several proces-
sor cores to divide the effort. But using carefully
chosen distance and occlusion metrics, likely based
on camera position and properties, would allow

much of the plants to be still, to be approximated
by deformable or oscillating curves, or to be simpli-
fied with variable physical resolution. Also, some
applications might be able to tolerate much lower
simulation resolution than we demonstrated, per-
haps with only 100 or so active nodes.

The populate phase involves processing contacts
from any collisions, redoing minimal kinemat-
ics as needed, and then forming the dynamic b
for the current time step. The solver stage applies
preconditioning and runs the two solvers. The ki-
nematic stage includes quaternion and direction
calculation, leaf transformation, recalculation of
the tree surface geometry, and an accumulation
of forces pushing back on any colliders. This phase
doesn’t include the minor kinematic adjustment
from collisions.

For the dense tree with an orbiting collider, run-
ning the separable solvers in parallel takes 61 per-
cent of the time that those solvers take serially.
Also, running the kinematics with four threads in
parallel consumes only 43 percent of the corre-
sponding serial time.

In these tests, the system scales almost linearly.
With the increased load of the collider, a 150 per-
cent increase in nodes raises the cost per node less
than 5 percent. A conjugate gradient has O(m) com-
plexity, where m is the number of nonzero elements

in A.10 Because the system consistently contributes
a base of three or four nonzero elements per node,
this suggests O(n) complexity. The variation in ele-
ment count is due to forking, so higher amounts of
branching can have increased complexity.

For comparison, consider a noncolliding model
of a 2D nonbranching minimally rigid pendulum11
using a Featherstone7 implementation. That sys-
tem takes 6 milliseconds to solve 300 nodes, each
with only one DOF. If we linearly adjust from that
2.8-GHz processor to our 2.2 GHz, this equates to
a cost per node of more than 25 microseconds. Us-
ing our model to simulate a limp, branchless stem
of 300 segments, the total simulation time is 440
µs single-threaded, which is 1.5 µs per segment
and 0.7 µs per DOF.

For a complex branching tree, consider an-
other Featherstone implementation, specifically
optimized for hair and vegetation.12 In a simple
system of 135 segments, this implementation
achieved a best case of 250 ms, about 2 ms per
node. For a larger system of 4,500 segments, it
achieved a best case of 20 seconds, about 4 ms
per node. This is comparable to the noncollid-
ing case of our model, which achieves 1.8 µs per
node single-threaded and 1.2 µs per node multi-
threaded. Adding an aggressive collider raises the
cost per node to only 3.8 µs single-threaded and
2.8 µs multithreaded.

Memory use consists of two primary parts: the
geometry and the solver. The geometry data is
populated mostly with segments and their various
properties. In our sample implementation, a seg-
ment uses approximately 60 32-bit words. The solv-
er data consists of sparse matrices and fixed-length
vectors. The implementation of the sparse matrices
uses two words per nonzero entry: the value and
the horizontal position. Including the dual solvers’
expense, our implementation uses 10 matrices and
21 vectors (although if we neglect code readabil-
ity, we could probably reuse or eliminate several of
these). This works out to approximately 80 to 100
words each for the solver, for a total expense of 140
to 160 words per segment. A well-represented tree
could consume about 1 Mbyte.

This simplified method recreates the natu-
ral behavior of vegetation with a minimum

of computational expense. The model works best
for stiff structures where the angles between seg-
ments don’t approach 180 degrees. The current
implementation isn’t suitable for soft vine-like
structures, including those in trees such as the
weeping willow.

This simplified method
recreates the natural

behavior of vegetation
with a minimum of

computational expense.

	 IEEE Computer Graphics and Applications� 75

Computer Society
Digital Library

200,000+
articles and papers

Per article:

$9US (members)

$19US (nonmembers)

Looking for an
“Aha” idea?
Find it in CSDL

Looking for an
“Aha” idea?
Find it in CSDL

Performance tests have demonstrated the re-
duced system’s benefits. Using two N × N systems
instead of a combined system of at least 2N × 2N
not only substantially reduces the work that the
solver requires but also lets us divide the solver
and run it in parallel.

The full source code for the programs that
produced the images in this article is available
at www.freeelectron.org. This includes converted
tree specifications from prior work,4 as shown in
Figure 7.�

References
M. Jones, “Lessons Learned from Visual Simulation,”
Siggraph 94 Course Notes: Designing Real-Time 3D
Graphics for Entertainment, ACM Press, 1994, pp.
18–19.
X. Provot, “Deformation Constraints in a Mass-
Spring Model to Describe Rigid Cloth Behavior,”
Proc. Graphics Interface, A.K. Peters, 1995, pp.
147–155.
J. Beaudoin and J. Keyser, “Simulation Levels of
Detail of Plant Motion,” Proc. Eurographics/ACM
Siggraph Symp. Computer Animation, ACM Press,
2004, pp. 297–304.
J. Weber and J. Penn, “Creation and Rendering of
Realistic Trees,” Proc. Siggraph, ACM Press, 1995, pp.
119–128.
M. Holton, “Strands, Gravity, and Botanical Tree
Imagery,” Computer Graphics Forum, vol. 13, no. 1,
1994, pp. 57–67.
J. Weber and A. Weber, “Real-Time Multiresolution
Dynamics of Deeply Hierarchical Bodies,” Graphics
Programming Methods, J. Landers, ed., Charles River
Media, 2003, pp. 27–36.
R. Featherstone, Robot Dynamics Algorithms, Kluwer
Academic Publishers, 1987.
D. Baraff and A. Witkin, “Rapid Dynamic Simulation,”
Cloth Modeling and Animation, D.H. House and D.F.
Breen, eds., A.K. Peters, 2000, pp. 145–173.
M. Alexa, “Linear Combination of Transformations,”
Proc. Siggraph, ACM Press, 2002, pp. 380–387.
J.R. Shewchuck, “An Introduction to the Conjugate
Gradient Method without the Agonizing Pain,”
School of Computer Science, Carnegie Mellon Univ.,
pp. 30–41, www.cs.cmu.edu/~quake-papers/painless-
conjugate-gradient.pdf.
S. Redon, N. Galoppo, and M.C. Lin, “Adaptive
Dynamics of Articulated Bodies,” ACM Trans.
Graphics (Proc. Siggraph), 2005, pp. 936–945.
S. Hadap, “Oriented Strand—Dynamics of Stiff
Multi-body System” Proc. Eurographics/ACM Siggraph
Symp. Computer Animation, ACM Press, 2006, pp.
91–100.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Jason P. Weber is a character ef-
fects developer at DreamWorks
Animation. His research interests
include real-time computer graph-
ics, physical dynamics, natural en-
vironments, and game technology.
Weber received a BS in electrical

engineering from Virginia Polytechnic Institute and
State University. Contact him at baboon@imonk.com.

Figure 7. A collection of trees from the original structural model.
Equivalent parameters are easily determined.

